
Tree Denormalization

Copyright (C) 2002 by Thomas Beck. All rights reserved.

INTENT

Avoid iterations when querying tree related data.

ALSO KNOWN AS

Hierarchy Denormalization

MOTIVATION

When modeled in a normal form, finding all the direct and indirect childs of a node
requires at least as many iterations as the distance between the nodes. Some SQL
dialects allow it to be done it implicitly in one statement, but the performance is anyway
impacted.
The goal of the denormalization is to store all the possible direct and indirect links (all
the possible paths) in order to avoid any iteration or navigation through the tree and take
full advantage of the relational power, allowing joins on this structure.

APPLICABILITY

Use the Tree Denormalization Pattern when:

- The tree is not updated frequently and the update performance is not an issue.
- There is enough storage space to store the current and future expanded graph

structures.

STRUCTURE

Example of normalized structure:

 [0,n]

OU_ID = PARENT

 [0,n]
OU_ID = ORG_UNIT

ORG_UNIT
OU_ID <pk> int not null
PARENT <fk> int null
NAME varchar(20) not null

EMPLOYEE
EMP_ID <pk> int not null
NAME varchar(30) not null
ORG_UNIT <fk> int not null
SALARY money not null

Example with the denormalized table added:

 [0,n]

OU_ID = CHILD

 [0,n]

OU_ID = PARENT

 [0,n]

OU_ID = PARENT

 [0,n]
OU_ID = ORG_UNIT

ORG_UNIT
OU_ID <pk> int not null
PARENT <fk> int null
NAME varchar(20) not null

EMPLOYEE
EMP_ID <pk> int not null
NAME varchar(30) not null
ORG_UNIT <fk> int not null
SALARY money not null

ORG_UNIT_HIER
PARENT <pk,fk> int not null
CHILD <pk,fk> int not null
PARENT_LEVEL tinyint null
CHILD_LEVEL tinyint null

CONSEQUENCES

- It is possible to find out all the nodes below a given node with a “one-shot” query.
Exemple:

 SELECT CHILD FROM ORG_UNIT_HIER WHERE PARENT = x
It is possible to join such a list of nodes with other tables.

IMPLEMENTATION

Fields of the denormalized table:

PARENT: parent node
CHILD : child node
PARENT_LEVEL : level of the parent node. Ex. 1 for the root level, 2 for the root
childs, etc.
CHILD_LEVEL: level of the child node.

Suppose the following contents in the ORG_UNIT table:

OU_ID PARENT NAME
----------- ----------- --------------------
1 NULL The Company
2 1 Financial
3 1 Admin
4 1 IT
5 4 Support
6 5 Development

Then, the contents of the denormalized ORG_UNIT_HIER table are the following:

PARENT CHILD PARENT_LEVEL CHILD_LEVEL
----------- ----------- ------------ -----------
1 1 0 0
1 2 0 1
1 3 0 1
1 4 0 1
1 5 0 2
1 6 0 3
2 2 1 1
3 3 1 1
4 4 1 1
4 5 1 2
4 6 1 3

Note that each node contains also a self-reference (PARENT=CHILD). That’s very
useful for most queries, because if we want for example to know the total amount of
salaries in IT we simply query:

SELECT SUM(E.SALARY)
FROM EMPLOYEE E
, ORG_UNIT_HIER H
WHERE H.CHILD = E.ORG_UNIT
AND H.PARENT = 4

And that includes the node ‘IT’ itself.

PARENT_LEVEL and CHILD_LEVEL fields are not mandatory, but quite useful. We can
for example query only the direct childs of a node (WHERE CHILD_LEVEL =
PARENT_LEVEL+1)

Changes over time

Of course, most hierarchies change over time, and the historical status of the tree is
functional as well. The same technique used un the “History of change” pattern can be
applied, adding START and END instants, except that instead of just versioning tuples

we can directly version the entire contents of the ORG_UNIT_HIER table. That means
that each time there is a change in the tree, we create a new complete version of the
tree and explose it in the denormalized table, with the couple START,END representing
the version number.

Sorting

A common requirement is to be able to retrieve a tree structure in a given order. That
can be done by adding an ORDER_ID field to the ORG_UNIT_HIER table.
This field will simply be used in the ORDER BY clause.

SAMPLE CODE

Example of code populating the ORG_UNIT_HIER table (here in Sybase/Miscrosoft T-
SQL):

declare @level tinyint select @level = 1

begin tran populate_org_unit_hier

 -- empty the table
 delete ORG_UNIT_HIER

 -- insert the root record, as self-reference
 insert into ORG_UNIT_HIER (PARENT, CHILD, PARENT_LEVEL, CHILD_LEVEL)
 select OU_ID, OU_ID, 0, 0
 from ORG_UNIT
 where PARENT is null

 -- insert subsequent levels
 while 1=1
 begin
 -- insert the new level as direct childs
 insert into ORG_UNIT_HIER (PARENT, CHILD, PARENT_LEVEL, CHILD_LEVEL)
 select h.PARENT, o.OU_ID, h.PARENT_LEVEL, @level
 from ORG_UNIT_HIER h -- all the IDs with childs in the previous level
 , ORG_UNIT o -- the level to be added
 where
 ------- define h ----------------------
 h.CHILD_LEVEL = @level -1
 ------- define o ----------------------
 and o.PARENT = h.CHILD

 if @@rowcount = 0 break -- end of loop condition

 -- insert the new level as self-reference
 insert into ORG_UNIT_HIER (PARENT, C HILD, PARENT_LEVEL, CHILD_LEVEL)
 select CHILD, CHILD, CHILD_LEVEL, CHILD_LEVEL
 from ORG_UNIT_HIER -- all the IDs just inserted
 where CHILD_LEVEL = @level

 select @level = @level + 1
 end -- while

commit populate_org_unit_hier

update statistcs ORG_UNIT_HIER

KNOWN USES

Tree structures. Can be generalized also to some other types of graph.

RELATED PATTERNS

History of Change.

http://thomas.beck.name Last updated : 19 Mar 2002

